Scattering matrix, phase shift, spectral shift and trace formula for one-dimensional dissipative Schrödinger-type operators

نویسندگان

  • H. Neidhardt
  • J. Rehberg
چکیده

The paper is devoted to Schrödinger operators on bounded intervals of the real axis with dissipative boundary conditions. In the framework of the Lax-Phillips scattering theory the asymptotic behaviour of the phase shift is investigated in detail and its relation to the spectral shift is discussed. In particular, the trace formula and the Birman-Krein formula are verified directly. The results are exploited for dissipative Schrödinger-Poisson systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

ar X iv : m at h - ph / 0 01 10 32 v 1 1 8 N ov 2 00 0 Scattering Theory Approach to Random Schrödinger Operators in One Dimension

Methods from scattering theory are introduced to analyze random Schrödinger operators in one dimension by applying a volume cutoff to the potential. The key ingredient is the Lifshitz-Krein spectral shift function, which is related to the scattering phase by the theorem of Birman and Krein. The spectral shift density is defined as the " thermodynamic limit " of the spectral shift function per u...

متن کامل

m at h . SP ] 2 8 N ov 2 00 8 ABSOLUTELY CONTINUOUS AND SINGULAR SPECTRAL SHIFT FUNCTIONS

Given a self-adjoint operator H0, a self-adjoint trace class operator V and a fixed Hilbert-Schmidt operator F with trivial kernel and co-kernel, using limiting absorption principle an explicit set of full Lebesgue measure Λ(H0, F) ⊂ R is defined, such that for all points of this set the wave and the scattering matrices can be defined unambiguously. Many well-known properties of the wave and sc...

متن کامل

Trace formulae for dissipative and coupled scattering systems

For scattering systems consisting of a (family of) maximal dissipative extension(s) and a selfadjoint extension of a symmetric operator with finite deficiency indices, the spectral shift function is expressed in terms of an abstract Titchmarsh-Weyl function and a variant of the Birman-Krein formula is proved.

متن کامل

Trace Formulae and Inverse Spectral Theory for Schrödinger Operators

We extend the well-known trace formula for Hill's equation to general one-dimensional Schrodinger operators. The new function <J , which we introduce, is used to study absolutely continuous spectrum and inverse problems. In this note we will consider one-dimensional Schrodinger operators d2 (IS) H = -j-1 + V(x) onL2(R;dx)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005